

DXG2PH50A-90N

RF Power GaN Transistor

1. Product profile

dynax

1.1 General description

DXG2PH50A-90N is a 90 W RF GaN HEMT Transistor with second generation RF GaN technology from Dynax, which is ideal for cellular base station applications at frequencies from 4800 MHz to 5000 MHz.

Table 1. Typical performance ¹

Freq	P _{sat} ²	P _{avg} ³	$\eta_{\mathrm{D}}^{\;3}$	G _P ³	ACPR ³
(MHz)	(dBm)	(dBm)	(%)	(dB)	(dBc)
4800	49.7	41.3	48.0	12.3	-32.0
4880	49.6	41.3	48.3	12.5	-31.0
4960	49.5	41.3	49.2	12.3	-32.0

 $^{^{1}}$ Typical Doherty performance in Dynax Demo with the device soldered onto the heatsink, test condition: $V_{DS} = 48 \text{ V}$, $I_{DQA} = 60 \text{ mA}$, $V_{GSB} = -5.6 \text{ V}$.

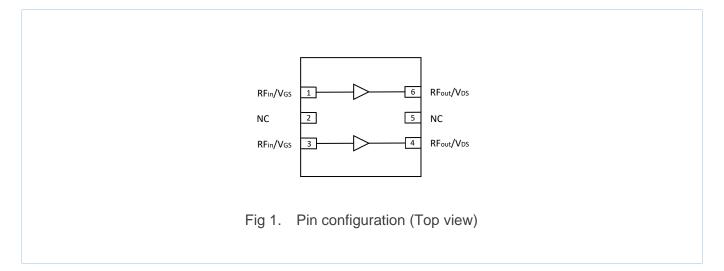
1.2 Features and benefits

- > High efficiency, high gain
- > Internally matched for broadband performance
- > Designed for Digital Pre-Distortion error correction systems
- > Optimized for Doherty applications

1.3 Applications

> RF power amplifier for base stations and multi carrier applications in the 4800 MHz to 5000 MHz frequency range

1.4 Lead-free and RoHS compliant



 $^{^2}$ Test condition: Input signal Pulsed CW, Pulse width = 100 μ s, Duty cycle = 10 %.

³ Test condition: Single-Carrier W-CDMA, IQ magnitude clipping, Input signal PAR = 7.5 dB @ 0.01 % probability on CCDF. ACPR measured in 3.84 MHz channel bandwidth @ ± 5 MHz offset.

2. Pinning information

3. Ordering information

Table 2. Ordering information

Part number	Marking	Package type	Packaging information
			Tray: Suffix = 416 units
DXG2PH50A-90N	DXG2PH50A-90N DC9B DFN 7×6.5mm	Tape and Reel: Suffix = 1000 units; 16 mm	
			Tape width; 13-inch Reel

4. Maximum ratings

Table 3. Maximum ratings

Parameter	Symbol	Rating	Unit
Drain-Source Voltage	V _{DSS}	150	V
Gate-Source Voltage	V_{GS}	-10 ~ +2	V
Operating Voltage	V_{DS}	0 ~ +55	V
Maximum Forward Gate Current	I _{GMAX}	10.3	mA
Storage Temperature Range	T _{STG}	- 65 ~ + 150	°C
Operating Junction Temperature	T_J	225	°C
Absolute Maximum Channel Temperature ¹	T _{MAX}	275	°C

¹ Functional operation above 225°C has not been characterized and is not implied. Operation at T_{MAX} (275°C) reduces median time to failure by an order of magnitude; Operation beyond T_{MAX} could cause permanent damage.

5. Thermal characteristics

Table 4. Thermal characteristics

Parameter	Symbol	Value	Unit		
Side A, Carrier					
Thermal Resistance at Average Power by Infrared Measurement,					
Active Die Surface-to-Case	R _{thjc} (IR)	4.4	°C/W		
$T_{base-plate} = 85^{\circ}C$, $P_D = 12.0 \text{ W}$					
Thermal Resistance at Average Power by Finite Element Analysis,					
Junction-to-Case	R _{thjc} (FEA)	6.5	°C/W		
$T_{base-plate} = 85$ °C, $P_D = 12.0 \text{ W}$					
Side B, Peaking					
Thermal Resistance at Average Power by Infrared Measurement,					
Active Die Surface-to-Case	R _{thjc} (IR)	2.3	°C/W		
$T_{base-plate} = 85^{\circ}C$, $P_D = 3.0 \text{ W}$					
Thermal Resistance at Average Power by Finite Element Analysis,					
Junction-to-Case	R _{thjc} (FEA)	3.8	°C/W		
$T_{\text{base-plate}} = 85^{\circ}\text{C}, P_{D} = 3.0 \text{ W}$					

6. Electrical characteristics (TA = 25°C unless otherwise noted)

Table 5. DC characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit
Side A, Carrier					
Drain-Source Leakage Current (V _{GS} = -10 V, V _{DS} = 150 V)	loss	-	-	3.9	mA
Drain-Source Breakdown Voltage (V _{GS} = -10 V, I _D = 3.9 mA)	V _{(BR)DSS}	150	-	-	V
Gate Threshold Voltage (V _{DS} = 48 V, I _D = 3.9 mA)	V _{GS(th)}	-4.0	-3.3	-1.0	V
Gate Quiescent Voltage (V _{DS} = 48 V, I _D = 60 mA)	V _{GS(Q)}	-	-3.0	-	V
Side B, Peaking					
Drain-Source Leakage Current (V _{GS} = -10 V, V _{DS} = 150 V)	IDSS	-	-	6.4	mA
Drain-Source Breakdown Voltage $(V_{GS} = -10 \text{ V}, I_D = 6.4 \text{ mA})$	V _{(BR)DSS}	150	-	-	V
Gate Threshold Voltage (V _{DS} = 48 V, I _D = 6.4 mA)	V _G S(th)	-4.0	-3.3	-1.0	V
Gate Quiescent Voltage (V _{DS} = 48 V, I _D = 90 mA)	V _G S(Q)	-	-3.0	-	V

7. Test information

7.1 Pulsed CW

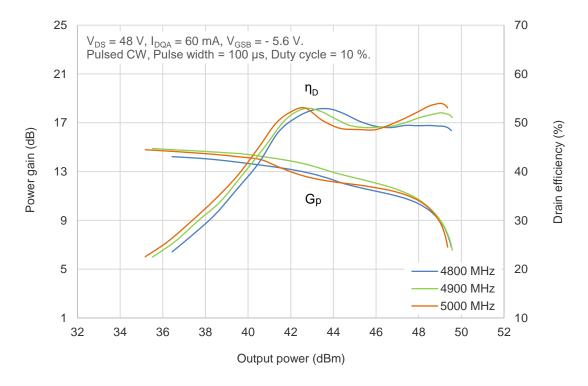


Fig 2. Power gain, Drain efficiency vs. Pulse output power

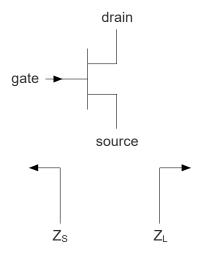


Fig 3. Definition of transistor impedance

8. Median lifetime

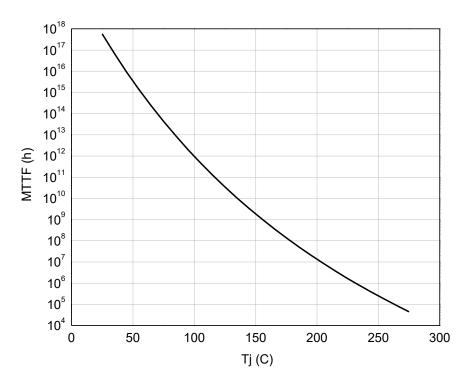


Fig 4. Median lifetime vs. channel temperature

9. Package outline

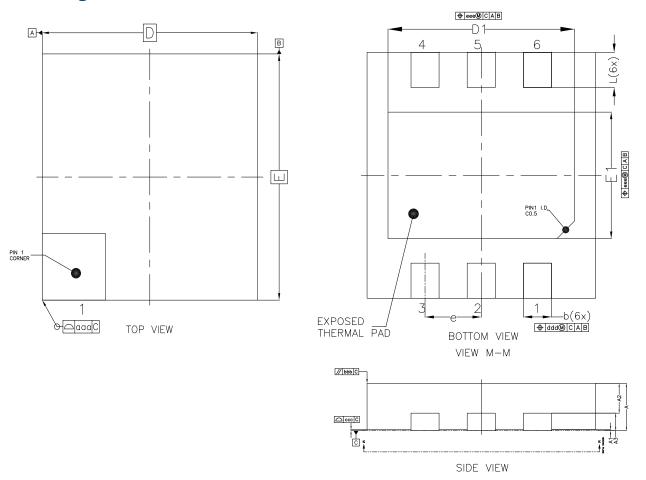


Fig 5. Package outline —— DFN 7×6.5mm

Table 6. Package dimensions

DESCRIPTION		DIM	MILLIMETER			
		DIIWI	MIN	NOM	MAX	
TOTAL THICKNESS		А	1.30 1.35		1.43	
STAND OFF		A1	0.00		0.08	
MOLD THICKNESS		A2	0.80	0.93		
L/F THICKNESS		A3	0.50 REF			
BODY SIZE	Χ	D	6.43	6.50	6.60	
DODY SIZE	Υ	Е	6.93	7.00	7.10	
LEAD PITCH		е	1.60 BSC			
LEAD WIDTH		b	0.75	0.80	0.88	
LEAD LENGTH		L	0.95	1.00	1.08	
ED 017E		D1	5.26	5.31	5.39	
EP SIZE		E1	3.55	3.60	3.68	
Tolerance of form and positio						
PACKAGE EDGE TOLER	ANCE	aaa	0.1			
MOLD FLATNESS		bbb	0.1			

(Continued)

DESCRIPTION	DIM	MILLIMETER			
DESCRIPTION	DIIVI	MIN	NOM	MAX	
LEAD COPLANARITY	ccc		0.08		
LEAD POSITION OFFSET	ddd		0.1		
EXPOSED PAD OFFSET	eee		0.1		

10. Abbreviations

Table 7. Abbreviations

Acronym	Description	
CW	Continuous Waveform	
GaN	Gallium Nitride	
HEMT	ligh Electron Mobility Transistor	
MTTF	Median Time To Failure	
VSWR	Voltage Standing Wave Ratio	

11. Legal information

11.1 Datasheet status

Document status	Product status	Definition
Objective [abort] detechent	Engineering	This document contains data from the objective specification
Objective [short] datasheet	sample	for product development.
Preliminary [short] datasheet	Engineering	This document contains data from the preliminary
Freiminary [Short] datastieet	sample	specification.
Production [short] datasheet	Mass product	This document contains the product specification.

11.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Dynax does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short datasheet — A short datasheet is an extract from a full datasheet with the same product type number(s) and title. A short datasheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full datasheet, which is available on request via the local Dynax sales office. In case of any inconsistency or conflict with the short datasheet, the full datasheet shall prevail.

Product specification — The information and data provided in a Product datasheet shall define the specification of the product as agreed between Dynax and its customer, unless Dynax and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Dynax product is deemed to offer functions and qualities beyond those described in the Product datasheet.

11.3 Disclaimers

Information in this document is believed to be accurate and reliable. However Dynax does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Dynax takes no responsibility for the content in this document if provided by an information source outside of Dynax.

All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Dynax products.

The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

Applications that are described herein for any of these products are for illustrative purposes only. Dynax makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Dynax products, and Dynax accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Dynax product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Dynax products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Dynax product can reasonably be expected to result in personal injury, death or severe property or environmental damage.

Unless this datasheet expressly states that this specific Dynax product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements.

This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

12. Contact information

For more information, please visit: http://www.dynax-semi.com